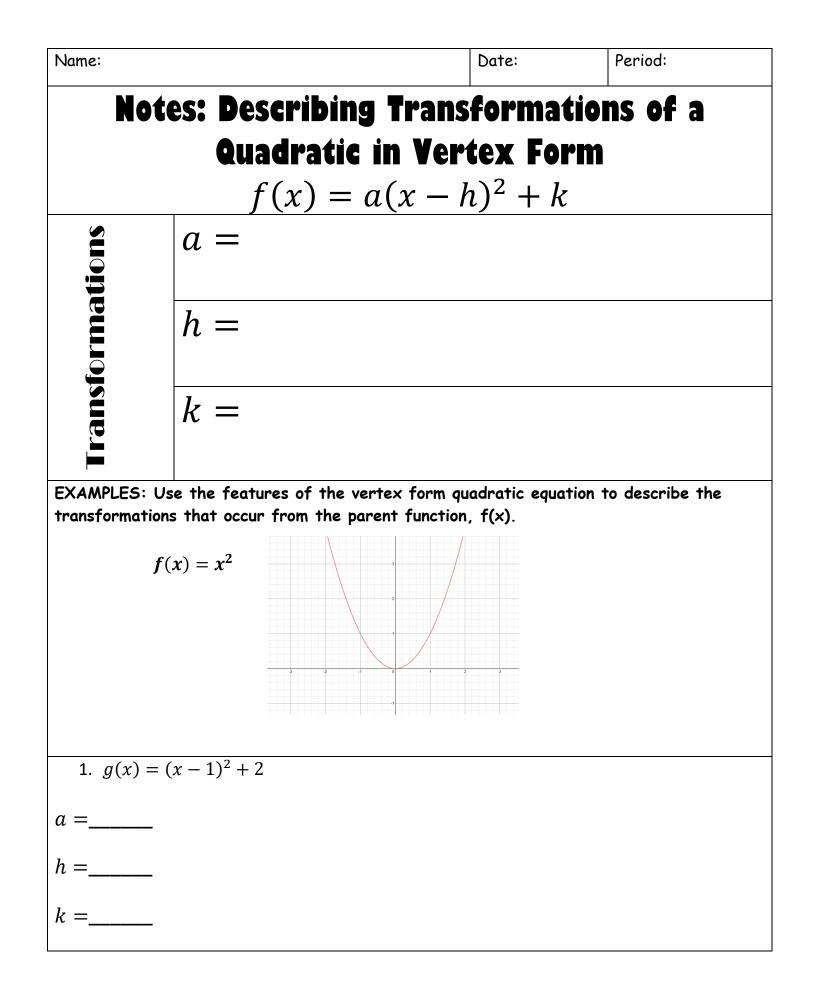
	Heritage High School – Distance Learning Mr. Leong's Algebra 1 Assignment Packet April 20 – April 23
Due Date:	Tuesday, April 28 by 9:00am <i>Late work will not be accepted</i>
Notes:	Included in this packet are some note taking templates. Those with internet access can complete the notes as you watch the YouTube videos linked below. - Describing Transformations of a Quadratic in Vertex Form - Graphing Quadratic Equations in Vertex Form
Videos:	For students with internet access, please view the videos below. Students with limited internet access can use the teacher's notes at the end of this packet.
	Videos for the notes: https://youtu.be/Pa3OWa5Yuhs https://youtu.be/OINbWZwygDM Additional videos on transformations: https://youtu.be/pW5z2gCTdDw https://youtu.be/6wHpTJylbhs Additional videos on graphing in vertex form:
Reading:	https://youtu.be/bNPIMo3vBUY Textbook p.442-444 (hint: use the Dynamic e-book on Clever to see video tutorials)
Exercises:	Textbook p.446 #19-28, 30-32, 35-36 Please submit your answers through Clever and the Big Ideas Math site. Those with limited internet access can email me a scan/photograph of their work. Those without internet access may submit paper copies to the main office on Monday from 12-3pm.
Contact:	leongc@luhsd.net 925.634.0037 ext. 6305 Remind @fnctn Zoom office hours (TBA)

Accessing Big Ideas Through Clever

The preferred method of completing assignments is electronically through Clever.

To access your assignments:

- Go to "clever.com/in/luhsd"
- Log in using your username and password as your student ID number
- Scroll down to "Math" where you will see the Big Ideas Math logo, click on "Big Ideas Math"
- If you are taking multiple math classes, you may need to select the book for the course you are working
- In the middle there is a tab that says "Assignments," click on "Assignments"

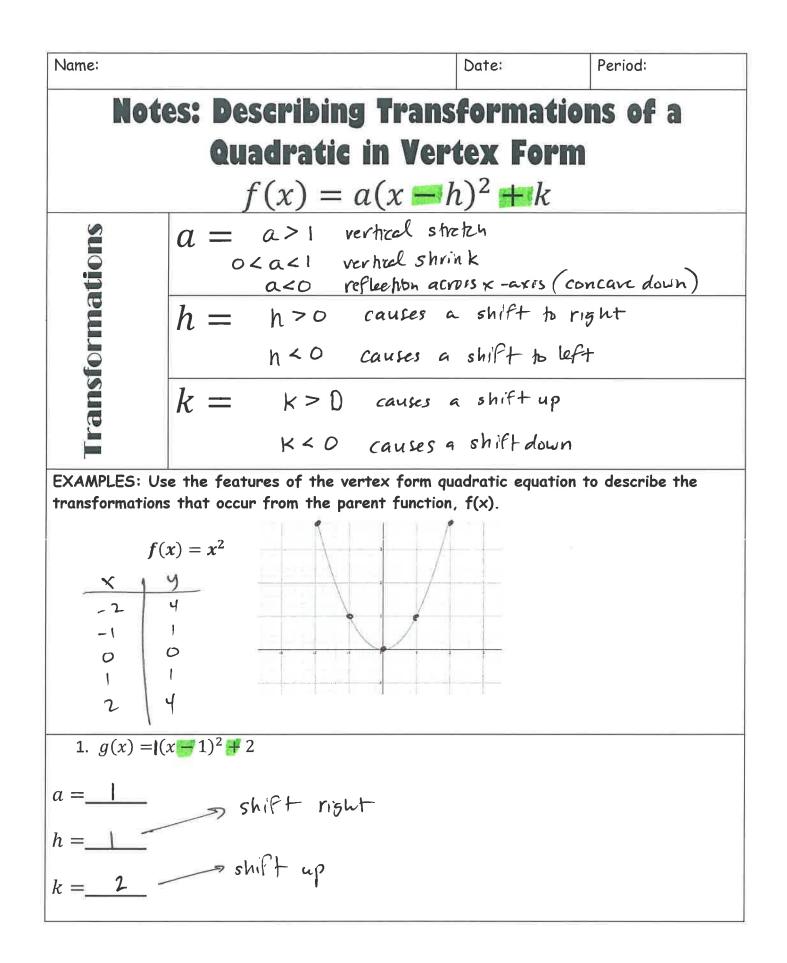

- Choose an assignment to work on from the list. Click the pencil/enter to start the assignment.
- **WARNING**!!!! Clever does NOT automatically save and submit progress. Once you finish the last problem in an assignment, be sure to <u>click your name in the top-right corner and click "Submit"</u> to turn your assignment in.

To access online tutorial videos:

- Go to "clever.com/in/luhsd"
- Log in using your username and password as your student ID number
- Scroll down to "Math" where you will see the Big Ideas Math logo, click on "Big Ideas Math"
- If you are taking multiple math classes, you may need to select the book for the course you are working
- Click on "Student Dynamic ebook"
- You can use the "Contents" tab on the left to get to the section you wish to view
- In the section you will see examples that look similar to the below pic:

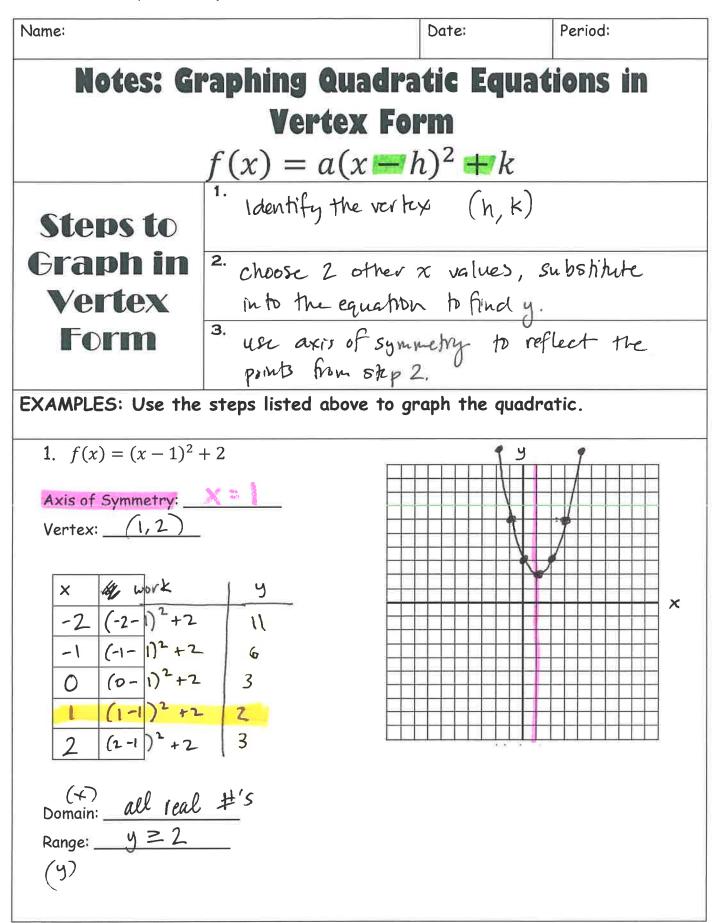
You can also use function rules to identify functions. The only variable term A f is an x -term, so it is an absolute value function.	Identifying a Function Function family to which f belongs. Compare the graph of f to the graph of its parent function. Solution The graph of f is V-shaped, so f is an absolute value function. The graph of f is Syshaped, so f is an absolute value function. The graph of f is parent absolute value function. The graph of the parent absolute value function. The domain of each function is all real numbers, but the range of f is $y \ge 1$ and the range of the	amily
	but the range of $f(y) \ge 1$ and the range of the parent absolute value function is $y \ge 0$. Monitorina Proaress (1) Help in English	and Spanish at BieldeasMath.com

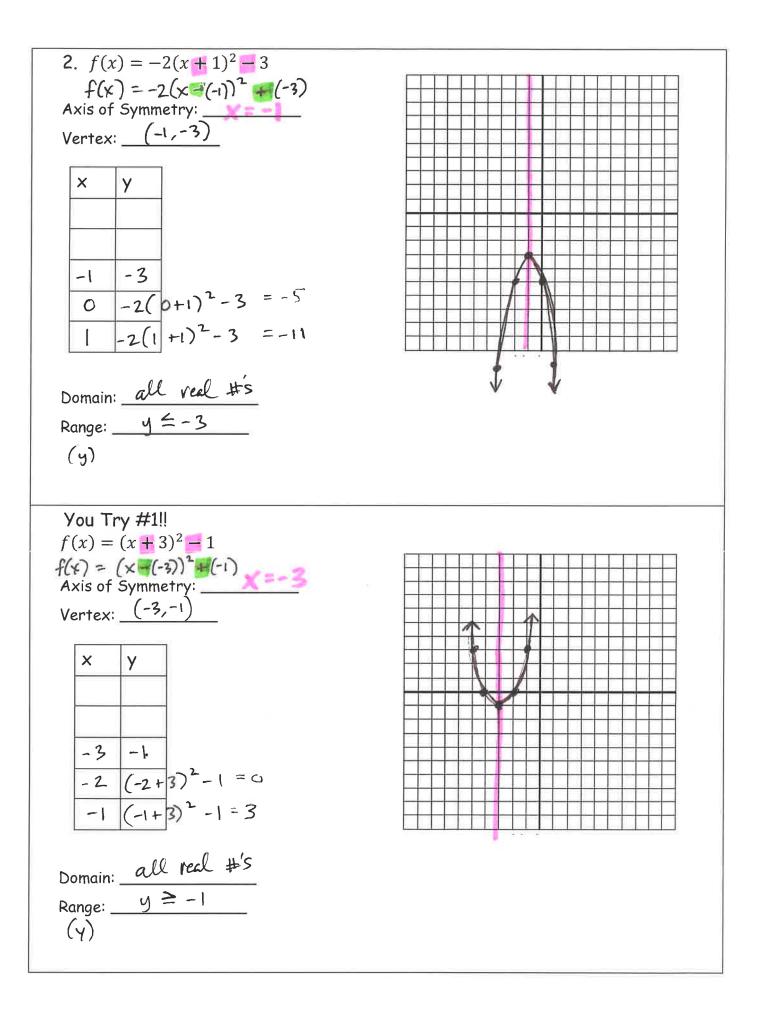
The blue circle with triangle indicates there is a tutorial video for that example. Click the icon to view.

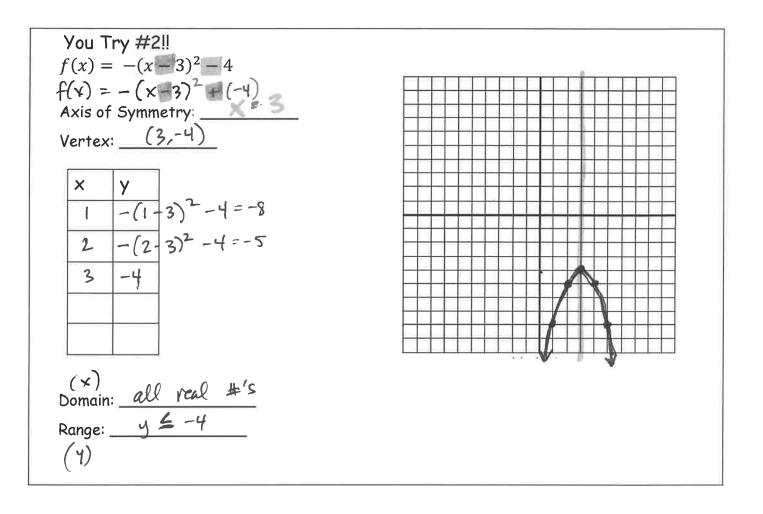


2. $h(x) = -2(x+1)^2 - 3$
<i>a</i> =
$h = ___$
<i>k</i> =
You Try #1!! $g(x) = (x + 3)^2 - 1$
<i>a</i> =
$h = _$
<i>k</i> =
You Try #2!! $h(x) = -(x-3)^2 - 4$
<i>a</i> =
$h = _$
$k = _$
You Try #3!!
You Try #3!! $g(x) = \frac{1}{2}(x+5)^2 - 1$
<i>a</i> =
$h = _$
<i>k</i> =

nhing Qua		Period:	
рину чиа	dratic Eq	uations in	
Vertex			
f(x) = a(x)	$(-h)^2 + h$	k	
•			
B			
tone listed above	to oneph the c	uadratia	
2]
			-
			-
	2. 3.	2. 2. 3. teps listed above to graph the q 2.	3. teps listed above to graph the quadratic. 2


Axis of Symmetry:	
/ertex:	
× y	
Range: You Try #1!!	
Range: You Try #1!! f(x) = (x + 3) ² - 1	1
Range: You Try #1!! $f(x) = (x + 3)^2 - 1$ Axis of Symmetry:	
Range: You Try #1!! $f(x) = (x + 3)^2 - 1$ Axis of Symmetry:	
Range: You Try #1!! $f(x) = (x + 3)^2 - 1$ Axis of Symmetry: /ertex:	
Range: You Try #1!! $f(x) = (x + 3)^2 - 1$ Axis of Symmetry:	
Range: You Try #1!! $f(x) = (x + 3)^2 - 1$ Axis of Symmetry: /ertex:	
Range: You Try #1!! $f(x) = (x + 3)^2 - 1$ Axis of Symmetry: /ertex:	
Range: You Try #1!! $f(x) = (x + 3)^2 - 1$ Axis of Symmetry: /ertex:	
Range: You Try #1!! $f(x) = (x + 3)^2 - 1$ Axis of Symmetry: Vertex:	
Range: You Try #1!! $f(x) = (x + 3)^2 - 1$ Axis of Symmetry: /ertex:	
Domain: Range: You Try #1!! $f(x) = (x + 3)^2 - 1$ Axis of Symmetry: Vertex: x y y y y y y y y	


kis of Symmetry:		+			\mp				+		+	Ħ	\mp
ertex:		\pm			\pm							╞	\pm
	_	+		+	+	+		H	+		+	\vdash	+
x y												\square	\mp
	-	+		+	_		_	\vdash	+		_	\vdash	+
	-	+		+	+		-	⊢	+-		+-	┢┼┼	+-
					_				_		_	\square	+
		_	\vdash	+	_	+		\vdash	+	\vdash	_	\vdash	+
	-	+	\vdash	+	+	+		\vdash	+	\vdash	+	\vdash	+
	-	+	\vdash	+	+	+			+	\vdash	+	\vdash	+
					+				+			\square	+
													+



2.
$$h(x) = -2(x+1)^2 - 3$$
 $h(x) = -2(x-(-1))^2 + (-3)$
 $a = -2$ concave down, ver head struck h
 $h = -1$ \longrightarrow shift left
 $k = -3$ \longrightarrow shift down

You Try #1!!
 $g(x) = (x+3)^2 - 1$ $g(x) = 1(x-(-3))^2 + (-1)$
 $a = -1$
 $h = -3$ \longrightarrow shift left
 $k = -1$ \longrightarrow shift down

You Try #2!!
 $h(x) = -(x-3)^2 - 4$ $h(x) = -1(x-3)^2 + (-4)$
 $a = -1$ \longrightarrow concave down
 $h = -3$ \longrightarrow shift right
 $k = -4$ \longrightarrow shift down

You Try #3!!
 $g(x) = \frac{1}{2}(x+5)^2 - 1$ $g(x) = \frac{1}{2}(x-(-5))^2 + (-1)$
 $a = -5$ \longrightarrow shift left
 $k = -5$ \longrightarrow shift left
 $k = -5$ \longrightarrow shift left
 $k = -1$ \longrightarrow shift down.

Standard Form: f(x) = ax2 + bx + c

Intro to Vertex Form $y = \alpha (x-h)^2 + K$ vertex is (h,k)How to identify h & K To identify h > figure out value of x that makes ()=0 y = 3(x-2)[+3]y= 3(x-h)+K > if x-2 = x-h 50 h=2. 50 K=3 $\frac{-x}{-2} - \frac{x}{-1} = \int_{-1}^{-x} Dout$ (h, k) Vertex: (2,3) du this [2=h] but I $y = -2(x + 1)^{2} + 2$ am showing h=-1 K=2 - vertex: (-1,2) you why ! Notice (X-h)2 $(x+3)^2 \rightarrow (x-(-3))^2$ $\frac{w k y}{x - h} = x + 1$ -x -x -h = 1 -1 -1 h= -1 $y = -(x-1)^2$ Other examples: $y = 3(x - 4)^2 + 2$ h=1 K=0 $y = -\frac{1}{2}(x+3)^2 - 4 \zeta$ h=4 K=2 (vertex: (1,0)/ h= -3 K=-4 (vertex: (4,2) Vertex: (-3,-4)](What you should start to notice is h is the opposite of what 50... yz 3x2-4 it looks like & K is what it h=0 K= -4 Vertex: (0,-4)] looks like.

 $y=a(x-h)^{*}+K$ Describing Transformations of a Quadratic in Vertex Form – Graphed Visual Example $v = x^2$ Parent Function $y = 4(x-2)^2 - 3$ N a = 4 -> opens up, vertical stretch (string) h = 2 > horizontal shift right 2 with K= -3 -> vertical shift down 3 units So... For the parent function to become the new function it went right 2, down 3 and became skinnier. (order of transformations does not matter) Parentsunch $v = x^2$ $v = -\frac{1}{4}(x+3)^2 + 4$ > opens down (reflection over X-axis) a= - 4 vertical shrink (wider) > horizontal shift h= -3 left 3 comits Kz 4 - vertical shift up 4 units So... for parent function to become new function it was reflected over x-axis, became flatter, moved left 3 units and up 4 units.